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Problem 4.2

Use separation of variables in cartesian coordinates to solve the infinite cubical well (or “particle
in a box”):
0, z,y, z all between 0 and a;
V(.’E, Y, Z) -

oo, otherwise.
(a) Find the stationary states, and the corresponding energies.

(b) Call the distinct energies Eq, Es, F3, ..., in order of increasing energy. Find Ey, Es, Es,
E,, E5, and Fg. Determine their degeneracies (that is, the number of different states that
share the same energy). Comment: In one dimension degenerate bound states do not occur
(see Problem 2.44), but in three dimensions they are very common.

(c) What is the degeneracy of F14, and why is this case interesting?

Solution

Part (a)

The aim is to find how a prescribed initial wave function Wy (z,y, z) evolves in all of space

oV  n? (82\11 A

th— 2 + 0,2 + aZ2>—i—V\I/, —o0 < x,y,z2 <00, t>0

ot 2m
\I/(.’IJ, Y, 2, O) - \PO($7 Y, Z)
subject to the potential energy function,

0 if0<z,y,2<a
Ve, y,2) =
oo elsewhere

Outside of the cube in the first octant with side a,

o h2 (82\11 02U 92U

th— = 81‘2 —+ 8y2 + 822> + (OO)\IJ, z,Y,z Qé (O,CI,),

ot 2m

and the only way for both sides to be equal is if ¥(z,y, z,t) = 0. The wave function is required to
be continuous, so ¥ = 0 on the sides of this cube, that is, the z =0, x =a,y=0,y =a, z =0,
and z = a planes.
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Inside the cube, then, the initial boundary value problem to solve is

ov R <a2\11 o A

th— 8$2+8y2+522>’ O<x,y,2<a,t>0

ot 2m

U(0,y,z,t) =0, U(z,0,z2,t) =0, U(z,y,0,t) =0,

U(a,y,z,t) =0, U(z,a,z,t) =0, U(z,y,a,t) =0,
U(z,y,2,0) =Yz, y, 2).

Because Schrodinger’s equation and its associated boundary conditions are linear and
homogeneous, the method of separation of variables can be applied: Assume a product solution of
the form U(x,y, z,t) = X(x)Y (y)Z(2)T(t) and plug it into the PDE

XY WZEAT0) =~ [ XY WZET0] + XY WZETE] + 25 XY WZET0)]
XY 2T (0 = 3 [ XY WZEHT0 + XY G ZET0 + X @Y )2 0]
and the boundary conditions.
V0,526 =0 = XOYQZEHTEH =0 —  X(0)=0
U(a,y,z,t) =0 — X()Y(y)Z(z)T(t)=0 — X(a)=0
V(0,5 =0 —  X@Y0)ZEHTEH=0 —  Y(0) =0
V(a8 =0 o X@Y@ZETH =0 -  Y(a)=0
Uiy, 0,)=0 =  X@YWZOTH) =0 —  2(0)=0
U(z,y,a,t) =0 — X (@)Y (y)Z(a)T(t) =0 — Z(a) =0

Divide both sides of the PDE by X (2)Y (y)Z(2)T'(t) to separate variables.

LT K [X”(w) Y'(y) Z”(Z)]

"TH) T T am [X(@) | Y(y) | Z()

The only way a function of ¢t can be equal to a function of x, y, and z is if both are equal to a

constant.
T R [X'@) Y | Z'E)]
mT@“2m[Xu> Y@y+2@}‘E

Solve this second equation for X" (x)/X (z).

X" (x) _ 2mE Y'(y)  Z2"(2)
X(x) oYy o Z(2)

The only way a function of z can be equal to a function of y and z is if both are equal to another
constant.

X'(z)  2mE  Y'(y) Z"(z)

X(@) — m Y@l o Z()
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Solve this second equation for Y (y)/Y (y).

Y (y) _ 2mE P Z"(z)
Y(y) h? Z(2)

The only way a function of y can be equal to a function of z is if both are equal to another
constant.

Y// "
(y) :_2mE_F_ Z"(2) _G
Y(y) h? Z(z)
As a result of applying the method of separation of variables, Schrédinger’s equation has reduced
to four ODEs—one in z, one in y, one in z, and one in t.

T'(t)
T(t)
X//( )
(z)
Y (y)

7

>t

E

B
I
"

a

2mE Z"(2)
Nz Z(2)

The strategy is to solve the second and third eigenvalue problems first to get F' and G. Once
those are known, the fourth eigenvalue problem can be solved to get E. Finally, the first
eigenvalue problem can be solved to get T'().

X"(z)=FX(x), X(0)=0, X(a) =0
Check to see if there are positive eigenvalues: F' = p?.
X" =p2X
The general solution can be written in terms of hyperbolic sine and hyperbolic cosine.
X (z) = Cy cosh px + Cy sinh px

Apply the boundary conditions to determine Cy and Cbs.

X(0)=C1=0

X(a) = C cosh pa + Cysinh pa = 0

Since C7 = 0, the second equation reduces to Cs sinh pa = 0. No nonzero value of i can satisfy
this equation, so Cy = 0. This leads to X (x) = 0, the trivial solution, which means there are no
positive eigenvalues. Check to see if zero is an eigenvalue: F' = 0.

X// — 0
The general solution is obtained by integrating both sides with respect to = twice.

X(z) = Csz + Cy

www.stemjock.com



Griffiths Quantum Mechanics 3e: Problem 4.2 Page 4 of 11

Apply the boundary conditions to determine Cs and Cy.
X(0)=Cy=0
X(a)=C3a+Cy =0

Since Cy = 0, the second equation reduces to Csa = 0, so C5 = 0. This leads to X (x) = 0, the

trivial solution, which means zero is not an eigenvalue. Check to see if there are negative

eigenvalues: F' = —v2.

X" = 42X
The general solution can be written in terms of sine and cosine.
X(x) = Cscosyr + Cgsinyx

Apply the boundary conditions to determine C5 and Cg.

X(0)=Cs=0

X(a) = C5cosvya + Cgsinya = 0
Since C5 = 0, this second equation reduces to Cgsinya = 0.

sinya =0

vya =jm, j=0,£1,£2 ...
Y=
a

There are in fact negative eigenvalues,

22
T
F:—’y2:—372 5 j:1727..-,
a
and the eigenfunctions associated with them are
| T
X(z) = Cgsin ‘7—,
a

where Cg remains arbitrary. j is a positive integer because j = 0 leads to the zero eigenvalue, and
negative values of j lead to redundant eigenvalues. The same argument can be used to solve the
eigenvalue problem involving Y (y).

Y//(y) = GY(y)7 Y(O) =0, Y(a) =0

Its solution is

with i
Y(y) = Crsin —2,
a
where C7 is an arbitrary constant. With these values of F' and G, the eigenvalue problem
involving Z(z) becomes

2mE §2n? Z"(2) k2n?
Y — = Z(0) =0, Z(a) = 0.
h? ( a? > Z(z) a2’ (0)=0, Z(a) =0
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Solve for Z"(z).

" omE  j?m?  K%n?
Z" = - 2 a2 a2 Z

This ODE for Z(z) and its boundary conditions are the same as those for X (x) and Y (y). The
general solution for which eigenvalues exist is then

2mE  j2n? k2q2 . [2mE  j2n2  k2x2
Z(z)—C’chS\/ T R, z 4+ Cysin R
Apply the boundary conditions to determine Cg and Cy.
Z(0)=Cs =0
2mE  j2n? k2x2 . [2mE  j2n2  k2x2
Z(a)—CchS\/ 2 T2 T 2 a + Cy sin T T g a=0

Since Cs = 0, this second equation reduces to

o'mE 2.2 k272
Cgsin\/m _ 7Ta:()

h2 a? a’
. [2mE  j2m?  k2x?
sin 2 2 2 0 0
omE 272 k2q2
\/7;; I I a—im, 1=0,41,42,...
a a
omE  *n?  K*m? Pn?
2 a2 a2 a2
Solve for F.
i=1,2,...
72 h?
Ejp = 2+ k2 4 12 k=1,2,...
Gkl I (] + + ), l 1)2>

Only positive values of [ are used because | = 0 leads to the zero eigenvalue, and negative values
lead to redundant values of E. The eigenfunctions associated with these values of F are

l
Z(z) = Cysin %Z,

where Cy is an arbitrary constant. With this value of E, the eigenvalue problem involving 7T'(t)

becomes T ) 272
t ™
1 = 2+ k202
! T(t) QmaQ(‘7 R+,

which has the general solution,
;2

im°h .
T(t) = Cipexp [— Sma? (G2 + K+ l2)t] :

Consequently, the stationary states are
Vi@, y, 2, t) = Xj(2)Yi(y) Z1(2) T ()

it2h
2ma?

. x| kwy | lwz [
= Asin =——sin —= sin — exp | —

(% + k% + l2)t] ,
a a a
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where A is a combination of the arbitrary constants. For the solutions to be physically relevant,
the normalization constant A is chosen so that

JI| Witz o= [7 [0 W 00,200 dedyds
0 0 0

the cube
—AQ/ / / sin? 2k:7ry inzlﬂ—zdwdydz
a a

9 9 JTT ¢ o kmy ¢ glmz

=A sin® =— dx sin dy sin dz
0 a 0 a 0 a
A2 (N (Y (e
=4 (2) (2) (2)
Solve for A.

Therefore, the stationary states are

2\ %/? jmx km Iz im?h J=L2...
Uiz, y,2,t) = (a) SIDTSIDTZ/SIHTGXP [_2m G2+ K2+ 1)t k=1,2,....
=12, ...

According to the principle of superposition, the general solution to the Schrodinger equation is a
linear combination of the stationary states over all the eigenvalues.

[c e 2uNNe olNe o]

\IJ(IL’ Y, z, t Z Zc]kl\:[jjkl ZE ' Ys %5 t)

Jj=1k=11[=1
00 oo 00 3/2 .2
2 k l h
= ZZ Ciki () sm@smﬂsinﬂexp [ il 2(j2 + k2 —I—lQ)t}
i a a a a 2ma
2\ PSS & k ! im2h
= () Cikl sm‘ﬂsmﬂsinﬂexp [ - (7 + K +l2)t}
a o e a a a 2ma

232 & & JTx kmy Imz
U(z,y,2,0) = <a> C]leIHTSIHTSl = = Uo(x,y, 2)

= kmy | mz [ & . jmx a\3/2
ZZsm—sm— Cjpsin=— | = <7) Uo(z,y, 2)
a a a 2

k=1 I=1 j=1

Multiply both sides by sin(nwz/a), where n is a positive integer,

o oo o .

. kmy | lwz . jmx . nTx a\3/2 . nmwx

E g sin —= sin — E Cjrisin —sin — | = ( = Vo (z,y,z)sin —

a a — a a 2 a
=
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and then integrate both sides with respect to = from 0 to a.

i l 3/2
/OZZSlnﬂ-ysinm chklsln—sm? dx:/o (2> \I’o(aﬁ v, )Sln?da?

= kmy . l7rz T mr:cd a\3/2 a\If . mm?d
ZZsm—s ZCJ“/ Slﬂ—Sl — —(5) /0 o(w,y,z)smT i

Because the sine functions are orthogonal, the integral on the left is zero if j # n. As a result,
every term in the infinite series vanishes except for the one in which j = n.

oo o0 . .
l a 3/2 [a
g E sm—smE (cjkl/ sin? de) = (2) / Uo(z,y, 2) Sinﬂda:
0 a 2 0 a

k=11=1

Evaluate the integral on the left.

k l 3/2 ¢ ’
Z Z sin —Wy sin —WZ (Cjkl . 2) = (2) / Vo (x,y, 2)sin ITT g
2 2 0 a

k=11=1

Multiply both sides by 2/a.

o o0 .

l k 2 e

sin < Cjkl Sin7Ty> = (2) / Uo(z,y, 2) sin 70 d

a a 2 0 a

=1 k=1

Multiply both sides by sin(gmy/a), where ¢ is a positive integer,

N O kry . qmy a\1/2 (¢ jmx . qmy
sin — Cjki sin —= sin = <7) Uo(x,y, )sm—sm—dm

a \i— a 2 0 a

a
=1

and then integrate both sides with respect to y from 0 to a.

/“ > Imz Z kry . qmy d /“ (a)1/2 /aq; ( 2) jrx ded
sm— c sm— sin —= = — z,y,2)sin — sin 7Y gy
W jkl a Y 0 9 o 0 Y,z a a Yy

Bring the constants in front.

l kmy 1/2
sin Lz (Z Cjkl / sin —W sin ary d ) / / Uo(z,y, z)sin —mﬂ Sln — da: dy
a a

Because the sine functions are orthogonal, the integral on the left is zero if k # ¢. As a result,
every term in the infinite series vanishes except for the one in which k£ = q.

= . 1 © ok 1/2 kry
sin e (Cjk:l / sin? vy dy> / / Uo(x,y, 2 sm — sm — da: dy
a 0 a a

=1

=1
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Evaluate the integral on the left.
o .
l 1/2 k
siniz(c]kl a / / Uo(x,y, 2 smﬂsmiydxd
a
=1

Multiply both sides by 2/a.

e}

l7rz 1/2 jmx kmy
chkl sin — \IIO (z,y,z) sin =—— sin —= . dx dy

=1

Multiply both sides by sin(smz/a), where s is a positive integer,

(e}

Ilmz . smz 1/2 jrx kmy . smz
chkl sm—sm— \Ilg (z,y,2 Sln—bln—sm—dx dy
pt a a a

and then integrate both sides with respect to z from 0 to a.

S Imz STz 1/2 jmx k:ﬂy sTz
Cipg SIn — sin — dz = \I’Q (z,y,2)sin =—— sin —= sin — dx dy dz
0 J a a a

=1

Bring the constants in front.

I 1/2 I
chkl/ smﬂsinﬁ <> ///\Ilomy, smﬂsmﬂsinﬁda:dydz
a

Because the sine functions are orthogonal, the integral on the left is zero if [ # s. As a result,
every term in the infinite series vanishes except for the one in which [ = s.

a I o\1/2 ra ra ra . I Irs
Cjkl/ sin? —= dz = () / / / Uo(x,y, 2) sin 2% sin Y gin 72 dp dy dz
0 a a o Jo Jo a a a

Evaluate the integral on the left.

1/2 jrx kmy Iz
Cjkl - \Ifo (x,y, z) sin — sin Y sin o dxdydz
8/2 j k l
Cjkl = < > / / / Uo(x,y, 2 smﬂsm%ysmidx dydz.

Therefore,
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Part (b)

Evaluate the energy for many values of j, k, and .

B = ;;7222 (124124 12) =
oy = ;;ZZ (22412 412) =
Bio = ;;ZZ (124922 412) =
B = ;;’Z (124124 922) =
Foy = ;;222 (22 4922 412) =
Bop = ;;ZZ (22 412 4 922) =
B = ;;7222 (124922 4 22) =
Bsn = ;;ZZ (32 +124+1%) =
B = 27::;22 (12+ 3% +12) =
Ens = ;;ZZ (12 +1% 4 32) =
Foo = ;;ZZ (22 4 2%+ 92) =
Bz = ;;7222 (32 + 12 +22) =
Bs = ;;ZZ (32+22412) =
B = ;;ZQZ (12432 4+22) =
Eos1 = ;;7222 (2243 +1%) =
Frog = ;;222 (12 +22 4 32) =
Bors = ;:Z (224124 32) =

m2h2

2ma?

m2h2

2ma?

m2h2
2ma?
m2h2

2ma?

(11) = By

m2h2

2ma?

m2h2
2ma?
m2h2
2ma?
m2h2
2ma?
m2h2

ma?
m2h2

2ma?

(14)

(14)

(14)

(14)

The degeneracy is the number of states that have the same energy. Therefore, d; =1, dy = 3,

d3:3,d4:3,d5:1,andd6:6.
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Part (c)

Evaluate the energy for more values of j, k, and [.
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Evaluate the energy for even more values of j, k, and [.

Eyo0 = ;T;ZZ (42 +22+2%) = ;;7222 (24) = Eqo
Booy = ;;zz (22 + 22 +4%) = ;;ZZ (24)
Eqs = ;;ZZ (4> +12+3%) = ;T;ZZ (26) = E13
Eus ;; 22(42 +32412) ;;ZZ (26)
Eu3 = 27:; 22(12 + 4% + 3?) ;;ZZ (26)
By = 2”; S +4241%) = ;;ZZ (26)
Esq = ;;hz (32412 +4%) = ;:ZZ (26)
Es33 = ;;hz (3°+32+3?%) = ;;7222 (27) = Eua
Esin = ;; 22(52 +1241%) = ;;ZZ (27)
Eisi = 5 2222 (12 + 52 + 12) ;;7:; (27)
Euis = ;;ZZ (12 +1% 4 52) = ;:Z (27)

The degeneracies are d; = 3, dg = 3, dg = 3, dig = 6, d11 = 3, d12 = 3, d13 = 6, and d14 = 4.
Unlike the previous energies, F14 is obtained not only from the permutations of three numbers
(5, 1, and 1), but also from another set of numbers (3, 3, and 3).
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