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Problem 4.2

Use separation of variables in cartesian coordinates to solve the infinite cubical well (or “particle
in a box”):

V (x, y, z) =

0, x, y, z all between 0 and a;

∞, otherwise.

(a) Find the stationary states, and the corresponding energies.

(b) Call the distinct energies E1, E2, E3, . . . , in order of increasing energy. Find E1, E2, E3,
E4, E5, and E6. Determine their degeneracies (that is, the number of different states that
share the same energy). Comment : In one dimension degenerate bound states do not occur
(see Problem 2.44), but in three dimensions they are very common.

(c) What is the degeneracy of E14, and why is this case interesting?

Solution

Part (a)

The aim is to find how a prescribed initial wave function Ψ0(x, y, z) evolves in all of space

iℏ
∂Ψ

∂t
= − ℏ2

2m

(
∂2Ψ

∂x2
+

∂2Ψ

∂y2
+

∂2Ψ

∂z2

)
+ VΨ, −∞ < x, y, z < ∞, t > 0

Ψ(x, y, z, 0) = Ψ0(x, y, z)

subject to the potential energy function,

V (x, y, z) =

0 if 0 < x, y, z < a

∞ elsewhere
.

Outside of the cube in the first octant with side a,

iℏ
∂Ψ

∂t
= − ℏ2

2m

(
∂2Ψ

∂x2
+

∂2Ψ

∂y2
+

∂2Ψ

∂z2

)
+ (∞)Ψ, x, y, z /∈ (0, a),

and the only way for both sides to be equal is if Ψ(x, y, z, t) = 0. The wave function is required to
be continuous, so Ψ = 0 on the sides of this cube, that is, the x = 0, x = a, y = 0, y = a, z = 0,
and z = a planes.
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Inside the cube, then, the initial boundary value problem to solve is

iℏ
∂Ψ

∂t
= − ℏ2

2m

(
∂2Ψ

∂x2
+

∂2Ψ

∂y2
+

∂2Ψ

∂z2

)
, 0 < x, y, z < a, t > 0

Ψ(0, y, z, t) = 0, Ψ(x, 0, z, t) = 0, Ψ(x, y, 0, t) = 0,

Ψ(a, y, z, t) = 0, Ψ(x, a, z, t) = 0, Ψ(x, y, a, t) = 0,

Ψ(x, y, z, 0) = Ψ0(x, y, z).

Because Schrödinger’s equation and its associated boundary conditions are linear and
homogeneous, the method of separation of variables can be applied: Assume a product solution of
the form Ψ(x, y, z, t) = X(x)Y (y)Z(z)T (t) and plug it into the PDE

iℏ
∂

∂t
[X(x)Y (y)Z(z)T (t)] = − ℏ2

2m

[
∂2

∂x2
[X(x)Y (y)Z(z)T (t)] +

∂2

∂y2
[X(x)Y (y)Z(z)T (t)] +

∂2

∂z2
[X(x)Y (y)Z(z)T (t)]

]

iℏX(x)Y (y)Z(z)T ′(t) = − ℏ2

2m

[
X ′′(x)Y (y)Z(z)T (t) +X(x)Y ′′(y)Z(z)T (t) +X(x)Y (y)Z ′′(z)T (t)

]
and the boundary conditions.

Ψ(0, y, z, t) = 0 → X(0)Y (y)Z(z)T (t) = 0 → X(0) = 0

Ψ(a, y, z, t) = 0 → X(a)Y (y)Z(z)T (t) = 0 → X(a) = 0

Ψ(x, 0, z, t) = 0 → X(x)Y (0)Z(z)T (t) = 0 → Y (0) = 0

Ψ(x, a, z, t) = 0 → X(x)Y (a)Z(z)T (t) = 0 → Y (a) = 0

Ψ(x, y, 0, t) = 0 → X(x)Y (y)Z(0)T (t) = 0 → Z(0) = 0

Ψ(x, y, a, t) = 0 → X(x)Y (y)Z(a)T (t) = 0 → Z(a) = 0

Divide both sides of the PDE by X(x)Y (y)Z(z)T (t) to separate variables.

iℏ
T ′(t)

T (t)
= − ℏ2

2m

[
X ′′(x)

X(x)
+

Y ′′(y)

Y (y)
+

Z ′′(z)

Z(z)

]
The only way a function of t can be equal to a function of x, y, and z is if both are equal to a
constant.

iℏ
T ′(t)

T (t)
= − ℏ2

2m

[
X ′′(x)

X(x)
+

Y ′′(y)

Y (y)
+

Z ′′(z)

Z(z)

]
= E

Solve this second equation for X ′′(x)/X(x).

X ′′(x)

X(x)
= −2mE

ℏ2
− Y ′′(y)

Y (y)
− Z ′′(z)

Z(z)

The only way a function of x can be equal to a function of y and z is if both are equal to another
constant.

X ′′(x)

X(x)
= −2mE

ℏ2
− Y ′′(y)

Y (y)
− Z ′′(z)

Z(z)
= F
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Solve this second equation for Y ′′(y)/Y (y).

Y ′′(y)

Y (y)
= −2mE

ℏ2
− F − Z ′′(z)

Z(z)

The only way a function of y can be equal to a function of z is if both are equal to another
constant.

Y ′′(y)

Y (y)
= −2mE

ℏ2
− F − Z ′′(z)

Z(z)
= G

As a result of applying the method of separation of variables, Schrödinger’s equation has reduced
to four ODEs—one in x, one in y, one in z, and one in t.

iℏ
T ′(t)

T (t)
= E

X ′′(x)

X(x)
= F

Y ′′(y)

Y (y)
= G

−2mE

ℏ2
− F − Z ′′(z)

Z(z)
= G


The strategy is to solve the second and third eigenvalue problems first to get F and G. Once
those are known, the fourth eigenvalue problem can be solved to get E. Finally, the first
eigenvalue problem can be solved to get T (t).

X ′′(x) = FX(x), X(0) = 0, X(a) = 0

Check to see if there are positive eigenvalues: F = µ2.

X ′′ = µ2X

The general solution can be written in terms of hyperbolic sine and hyperbolic cosine.

X(x) = C1 coshµx+ C2 sinhµx

Apply the boundary conditions to determine C1 and C2.

X(0) = C1 = 0

X(a) = C1 coshµa+ C2 sinhµa = 0

Since C1 = 0, the second equation reduces to C2 sinhµa = 0. No nonzero value of µ can satisfy
this equation, so C2 = 0. This leads to X(x) = 0, the trivial solution, which means there are no
positive eigenvalues. Check to see if zero is an eigenvalue: F = 0.

X ′′ = 0

The general solution is obtained by integrating both sides with respect to x twice.

X(x) = C3x+ C4
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Apply the boundary conditions to determine C3 and C4.

X(0) = C4 = 0

X(a) = C3a+ C4 = 0

Since C4 = 0, the second equation reduces to C3a = 0, so C3 = 0. This leads to X(x) = 0, the
trivial solution, which means zero is not an eigenvalue. Check to see if there are negative
eigenvalues: F = −γ2.

X ′′ = −γ2X

The general solution can be written in terms of sine and cosine.

X(x) = C5 cos γx+ C6 sin γx

Apply the boundary conditions to determine C5 and C6.

X(0) = C5 = 0

X(a) = C5 cos γa+ C6 sin γa = 0

Since C5 = 0, this second equation reduces to C6 sin γa = 0.

sin γa = 0

γa = jπ, j = 0,±1,±2, . . .

γ =
jπ

a

There are in fact negative eigenvalues,

F = −γ2 = −j2π2

a2
, j = 1, 2, . . . ,

and the eigenfunctions associated with them are

X(x) = C6 sin
jπx

a
,

where C6 remains arbitrary. j is a positive integer because j = 0 leads to the zero eigenvalue, and
negative values of j lead to redundant eigenvalues. The same argument can be used to solve the
eigenvalue problem involving Y (y).

Y ′′(y) = GY (y), Y (0) = 0, Y (a) = 0

Its solution is

G = −k2π2

a2
, k = 1, 2, . . . ,

with

Y (y) = C7 sin
kπy

a
,

where C7 is an arbitrary constant. With these values of F and G, the eigenvalue problem
involving Z(z) becomes

−2mE

ℏ2
−
(
−j2π2

a2

)
− Z ′′(z)

Z(z)
= −k2π2

a2
, Z(0) = 0, Z(a) = 0.

www.stemjock.com



Griffiths Quantum Mechanics 3e: Problem 4.2 Page 5 of 11

Solve for Z ′′(z).

Z ′′ = −
(
2mE

ℏ2
− j2π2

a2
− k2π2

a2

)
Z

This ODE for Z(z) and its boundary conditions are the same as those for X(x) and Y (y). The
general solution for which eigenvalues exist is then

Z(z) = C8 cos

√
2mE

ℏ2
− j2π2

a2
− k2π2

a2
z + C9 sin

√
2mE

ℏ2
− j2π2

a2
− k2π2

a2
z.

Apply the boundary conditions to determine C8 and C9.

Z(0) = C8 = 0

Z(a) = C8 cos

√
2mE

ℏ2
− j2π2

a2
− k2π2

a2
a+ C9 sin

√
2mE

ℏ2
− j2π2

a2
− k2π2

a2
a = 0

Since C8 = 0, this second equation reduces to

C9 sin

√
2mE

ℏ2
− j2π2

a2
− k2π2

a2
a = 0

sin

√
2mE

ℏ2
− j2π2

a2
− k2π2

a2
a = 0√

2mE

ℏ2
− j2π2

a2
− k2π2

a2
a = lπ, l = 0,±1,±2, . . .

2mE

ℏ2
− j2π2

a2
− k2π2

a2
=

l2π2

a2
.

Solve for E.

Ejkl =
π2ℏ2

2ma2
(j2 + k2 + l2),


j = 1, 2, . . .

k = 1, 2, . . .

l = 1, 2, . . .

Only positive values of l are used because l = 0 leads to the zero eigenvalue, and negative values
lead to redundant values of E. The eigenfunctions associated with these values of E are

Z(z) = C9 sin
lπz

a
,

where C9 is an arbitrary constant. With this value of E, the eigenvalue problem involving T (t)
becomes

iℏ
T ′(t)

T (t)
=

π2ℏ2

2ma2
(j2 + k2 + l2),

which has the general solution,

T (t) = C10 exp

[
− iπ2ℏ
2ma2

(j2 + k2 + l2)t

]
.

Consequently, the stationary states are

Ψjkl(x, y, z, t) = Xj(x)Yk(y)Zl(z)Tjkl(t)

= A sin
jπx

a
sin

kπy

a
sin

lπz

a
exp

[
− iπ2ℏ
2ma2

(j2 + k2 + l2)t

]
,
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where A is a combination of the arbitrary constants. For the solutions to be physically relevant,
the normalization constant A is chosen so that

1 =

�

the cube

|Ψjkl(x, y, z, t)|2 dV =

� a

0

� a

0

� a

0
Ψ∗

jkl(x, y, z, t)Ψjkl(x, y, z, t) dx dy dz

= A2

� a

0

� a

0

� a

0
sin2

jπx

a
sin2

kπy

a
sin2

lπz

a
dx dy dz

= A2

(� a

0
sin2

jπx

a
dx

)(� a

0
sin2

kπy

a
dy

)(� a

0
sin2

lπz

a
dz

)
= A2

(a
2

)(a
2

)(a
2

)
.

Solve for A.

A = ±
(
2

a

)3/2

Therefore, the stationary states are

Ψjkl(x, y, z, t) =

(
2

a

)3/2

sin
jπx

a
sin

kπy

a
sin

lπz

a
exp

[
− iπ2ℏ
2ma2

(j2 + k2 + l2)t

]
,


j = 1, 2, . . .

k = 1, 2, . . .

l = 1, 2, . . .

.

According to the principle of superposition, the general solution to the Schrödinger equation is a
linear combination of the stationary states over all the eigenvalues.

Ψ(x, y, z, t) =

∞∑
j=1

∞∑
k=1

∞∑
l=1

cjklΨjkl(x, y, z, t)

=
∞∑
j=1

∞∑
k=1

∞∑
l=1

cjkl

(
2

a

)3/2

sin
jπx

a
sin

kπy

a
sin

lπz

a
exp

[
− iπ2ℏ
2ma2

(j2 + k2 + l2)t

]

=

(
2

a

)3/2 ∞∑
j=1

∞∑
k=1

∞∑
l=1

cjkl sin
jπx

a
sin

kπy

a
sin

lπz

a
exp

[
− iπ2ℏ
2ma2

(j2 + k2 + l2)t

]
Now apply the initial condition to determine cjkl.

Ψ(x, y, z, 0) =

(
2

a

)3/2 ∞∑
j=1

∞∑
k=1

∞∑
l=1

cjkl sin
jπx

a
sin

kπy

a
sin

lπz

a
= Ψ0(x, y, z)

Multiply both sides by (a/2)3/2.

∞∑
k=1

∞∑
l=1

sin
kπy

a
sin

lπz

a

 ∞∑
j=1

cjkl sin
jπx

a

 =
(a
2

)3/2
Ψ0(x, y, z)

Multiply both sides by sin(nπx/a), where n is a positive integer,

∞∑
k=1

∞∑
l=1

sin
kπy

a
sin

lπz

a

 ∞∑
j=1

cjkl sin
jπx

a
sin

nπx

a

 =
(a
2

)3/2
Ψ0(x, y, z) sin

nπx

a
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and then integrate both sides with respect to x from 0 to a.

� a

0

∞∑
k=1

∞∑
l=1

sin
kπy

a
sin

lπz

a

 ∞∑
j=1

cjkl sin
jπx

a
sin

nπx

a

 dx =

� a

0

(a
2

)3/2
Ψ0(x, y, z) sin

nπx

a
dx

Bring the constants in front.

∞∑
k=1

∞∑
l=1

sin
kπy

a
sin

lπz

a

 ∞∑
j=1

cjkl

� a

0
sin

jπx

a
sin

nπx

a
dx

 =
(a
2

)3/2 � a

0
Ψ0(x, y, z) sin

nπx

a
dx

Because the sine functions are orthogonal, the integral on the left is zero if j ̸= n. As a result,
every term in the infinite series vanishes except for the one in which j = n.

∞∑
k=1

∞∑
l=1

sin
kπy

a
sin

lπz

a

(
cjkl

� a

0
sin2

jπx

a
dx

)
=
(a
2

)3/2 � a

0
Ψ0(x, y, z) sin

jπx

a
dx

Evaluate the integral on the left.

∞∑
k=1

∞∑
l=1

sin
kπy

a
sin

lπz

a

(
cjkl ·

a

2

)
=
(a
2

)3/2 � a

0
Ψ0(x, y, z) sin

jπx

a
dx

Multiply both sides by 2/a.

∞∑
l=1

sin
lπz

a

( ∞∑
k=1

cjkl sin
kπy

a

)
=
(a
2

)1/2 � a

0
Ψ0(x, y, z) sin

jπx

a
dx

Multiply both sides by sin(qπy/a), where q is a positive integer,

∞∑
l=1

sin
lπz

a

( ∞∑
k=1

cjkl sin
kπy

a
sin

qπy

a

)
=
(a
2

)1/2 � a

0
Ψ0(x, y, z) sin

jπx

a
sin

qπy

a
dx

and then integrate both sides with respect to y from 0 to a.

� a

0

∞∑
l=1

sin
lπz

a

( ∞∑
k=1

cjkl sin
kπy

a
sin

qπy

a

)
dy =

� a

0

(a
2

)1/2 � a

0
Ψ0(x, y, z) sin

jπx

a
sin

qπy

a
dx dy

Bring the constants in front.

∞∑
l=1

sin
lπz

a

( ∞∑
k=1

cjkl

� a

0
sin

kπy

a
sin

qπy

a
dy

)
=
(a
2

)1/2 � a

0

� a

0
Ψ0(x, y, z) sin

jπx

a
sin

qπy

a
dx dy

Because the sine functions are orthogonal, the integral on the left is zero if k ̸= q. As a result,
every term in the infinite series vanishes except for the one in which k = q.

∞∑
l=1

sin
lπz

a

(
cjkl

� a

0
sin2

kπy

a
dy

)
=
(a
2

)1/2 � a

0

� a

0
Ψ0(x, y, z) sin

jπx

a
sin

kπy

a
dx dy
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Evaluate the integral on the left.

∞∑
l=1

sin
lπz

a

(
cjkl ·

a

2

)
=
(a
2

)1/2 � a

0

� a

0
Ψ0(x, y, z) sin

jπx

a
sin

kπy

a
dx dy

Multiply both sides by 2/a.

∞∑
l=1

cjkl sin
lπz

a
=

(
2

a

)1/2 � a

0

� a

0
Ψ0(x, y, z) sin

jπx

a
sin

kπy

a
dx dy

Multiply both sides by sin(sπz/a), where s is a positive integer,

∞∑
l=1

cjkl sin
lπz

a
sin

sπz

a
=

(
2

a

)1/2 � a

0

� a

0
Ψ0(x, y, z) sin

jπx

a
sin

kπy

a
sin

sπz

a
dx dy

and then integrate both sides with respect to z from 0 to a.

� a

0

∞∑
l=1

cjkl sin
lπz

a
sin

sπz

a
dz =

� a

0

(
2

a

)1/2 � a

0

� a

0
Ψ0(x, y, z) sin

jπx

a
sin

kπy

a
sin

sπz

a
dx dy dz

Bring the constants in front.

∞∑
l=1

cjkl

� a

0
sin

lπz

a
sin

sπz

a
dz =

(
2

a

)1/2 � a

0

� a

0

� a

0
Ψ0(x, y, z) sin

jπx

a
sin

kπy

a
sin

sπz

a
dx dy dz

Because the sine functions are orthogonal, the integral on the left is zero if l ̸= s. As a result,
every term in the infinite series vanishes except for the one in which l = s.

cjkl

� a

0
sin2

lπz

a
dz =

(
2

a

)1/2 � a

0

� a

0

� a

0
Ψ0(x, y, z) sin

jπx

a
sin

kπy

a
sin

lπz

a
dx dy dz

Evaluate the integral on the left.

cjkl ·
a

2
=

(
2

a

)1/2 � a

0

� a

0

� a

0
Ψ0(x, y, z) sin

jπx

a
sin

kπy

a
sin

lπz

a
dx dy dz

Therefore,

cjkl =

(
2

a

)3/2 � a

0

� a

0

� a

0
Ψ0(x, y, z) sin

jπx

a
sin

kπy

a
sin

lπz

a
dx dy dz.
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Part (b)

Evaluate the energy for many values of j, k, and l.

E111 =
π2ℏ2

2ma2
(12 + 12 + 12) =

π2ℏ2

2ma2
(3) = E1

E211 =
π2ℏ2

2ma2
(22 + 12 + 12) =

π2ℏ2

2ma2
(6) = E2

E121 =
π2ℏ2

2ma2
(12 + 22 + 12) =

π2ℏ2

2ma2
(6)

E112 =
π2ℏ2

2ma2
(12 + 12 + 22) =

π2ℏ2

2ma2
(6)

E221 =
π2ℏ2

2ma2
(22 + 22 + 12) =

π2ℏ2

2ma2
(9) = E3

E212 =
π2ℏ2

2ma2
(22 + 12 + 22) =

π2ℏ2

2ma2
(9)

E122 =
π2ℏ2

2ma2
(12 + 22 + 22) =

π2ℏ2

2ma2
(9)

E311 =
π2ℏ2

2ma2
(32 + 12 + 12) =

π2ℏ2

2ma2
(11) = E4

E131 =
π2ℏ2

2ma2
(12 + 32 + 12) =

π2ℏ2

2ma2
(11)

E113 =
π2ℏ2

2ma2
(12 + 12 + 32) =

π2ℏ2

2ma2
(11)

E222 =
π2ℏ2

2ma2
(22 + 22 + 22) =

π2ℏ2

2ma2
(12) = E5

E312 =
π2ℏ2

2ma2
(32 + 12 + 22) =

π2ℏ2

2ma2
(14) = E6

E321 =
π2ℏ2

2ma2
(32 + 22 + 12) =

π2ℏ2

2ma2
(14)

E132 =
π2ℏ2

2ma2
(12 + 32 + 22) =

π2ℏ2

2ma2
(14)

E231 =
π2ℏ2

2ma2
(22 + 32 + 12) =

π2ℏ2

2ma2
(14)

E123 =
π2ℏ2

2ma2
(12 + 22 + 32) =

π2ℏ2

2ma2
(14)

E213 =
π2ℏ2

2ma2
(22 + 12 + 32) =

π2ℏ2

2ma2
(14)

The degeneracy is the number of states that have the same energy. Therefore, d1 = 1, d2 = 3,
d3 = 3, d4 = 3, d5 = 1, and d6 = 6.
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Part (c)

Evaluate the energy for more values of j, k, and l.

E322 =
π2ℏ2

2ma2
(32 + 22 + 22) =

π2ℏ2

2ma2
(17) = E7

E232 =
π2ℏ2

2ma2
(22 + 32 + 22) =

π2ℏ2

2ma2
(17)

E223 =
π2ℏ2

2ma2
(22 + 22 + 32) =

π2ℏ2

2ma2
(17)

E411 =
π2ℏ2

2ma2
(42 + 12 + 12) =

π2ℏ2

2ma2
(18) = E8

E141 =
π2ℏ2

2ma2
(12 + 42 + 12) =

π2ℏ2

2ma2
(18)

E114 =
π2ℏ2

2ma2
(12 + 12 + 42) =

π2ℏ2

2ma2
(18)

E331 =
π2ℏ2

2ma2
(32 + 32 + 12) =

π2ℏ2

2ma2
(19) = E9

E313 =
π2ℏ2

2ma2
(32 + 12 + 32) =

π2ℏ2

2ma2
(19)

E133 =
π2ℏ2

2ma2
(12 + 32 + 32) =

π2ℏ2

2ma2
(19)

E412 =
π2ℏ2

2ma2
(42 + 12 + 22) =

π2ℏ2

2ma2
(21) = E10

E421 =
π2ℏ2

2ma2
(42 + 22 + 12) =

π2ℏ2

2ma2
(21)

E142 =
π2ℏ2

2ma2
(12 + 42 + 22) =

π2ℏ2

2ma2
(21)

E241 =
π2ℏ2

2ma2
(22 + 42 + 12) =

π2ℏ2

2ma2
(21)

E124 =
π2ℏ2

2ma2
(12 + 22 + 42) =

π2ℏ2

2ma2
(21)

E214 =
π2ℏ2

2ma2
(22 + 12 + 42) =

π2ℏ2

2ma2
(21)

E332 =
π2ℏ2

2ma2
(32 + 32 + 22) =

π2ℏ2

2ma2
(22) = E11

E323 =
π2ℏ2

2ma2
(32 + 22 + 32) =

π2ℏ2

2ma2
(22)

E233 =
π2ℏ2

2ma2
(22 + 32 + 32) =

π2ℏ2

2ma2
(22)
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Evaluate the energy for even more values of j, k, and l.

E422 =
π2ℏ2

2ma2
(42 + 22 + 22) =

π2ℏ2

2ma2
(24) = E12

E242 =
π2ℏ2

2ma2
(22 + 42 + 22) =

π2ℏ2

2ma2
(24)

E224 =
π2ℏ2

2ma2
(22 + 22 + 42) =

π2ℏ2

2ma2
(24)

E413 =
π2ℏ2

2ma2
(42 + 12 + 32) =

π2ℏ2

2ma2
(26) = E13

E431 =
π2ℏ2

2ma2
(42 + 32 + 12) =

π2ℏ2

2ma2
(26)

E143 =
π2ℏ2

2ma2
(12 + 42 + 32) =

π2ℏ2

2ma2
(26)

E341 =
π2ℏ2

2ma2
(32 + 42 + 12) =

π2ℏ2

2ma2
(26)

E134 =
π2ℏ2

2ma2
(12 + 32 + 42) =

π2ℏ2

2ma2
(26)

E314 =
π2ℏ2

2ma2
(32 + 12 + 42) =

π2ℏ2

2ma2
(26)

E333 =
π2ℏ2

2ma2
(32 + 32 + 32) =

π2ℏ2

2ma2
(27) = E14

E511 =
π2ℏ2

2ma2
(52 + 12 + 12) =

π2ℏ2

2ma2
(27)

E151 =
π2ℏ2

2ma2
(12 + 52 + 12) =

π2ℏ2

2ma2
(27)

E115 =
π2ℏ2

2ma2
(12 + 12 + 52) =

π2ℏ2

2ma2
(27)

The degeneracies are d7 = 3, d8 = 3, d9 = 3, d10 = 6, d11 = 3, d12 = 3, d13 = 6, and d14 = 4.
Unlike the previous energies, E14 is obtained not only from the permutations of three numbers
(5, 1, and 1), but also from another set of numbers (3, 3, and 3).
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