Problem 4.2

Use separation of variables in cartesian coordinates to solve the infinite cubical well (or "particle in a box"):

$$
V(x, y, z)= \begin{cases}0, & x, y, z \text { all between } 0 \text { and } a ; \\ \infty, & \text { otherwise }\end{cases}
$$

(a) Find the stationary states, and the corresponding energies.
(b) Call the distinct energies $E_{1}, E_{2}, E_{3}, \ldots$, in order of increasing energy. Find E_{1}, E_{2}, E_{3}, E_{4}, E_{5}, and E_{6}. Determine their degeneracies (that is, the number of different states that share the same energy). Comment: In one dimension degenerate bound states do not occur (see Problem 2.44), but in three dimensions they are very common.
(c) What is the degeneracy of E_{14}, and why is this case interesting?

Solution

Part (a)

The aim is to find how a prescribed initial wave function $\Psi_{0}(x, y, z)$ evolves in all of space

$$
\begin{gathered}
i \hbar \frac{\partial \Psi}{\partial t}=-\frac{\hbar^{2}}{2 m}\left(\frac{\partial^{2} \Psi}{\partial x^{2}}+\frac{\partial^{2} \Psi}{\partial y^{2}}+\frac{\partial^{2} \Psi}{\partial z^{2}}\right)+V \Psi, \quad-\infty<x, y, z<\infty, t>0 \\
\Psi(x, y, z, 0)=\Psi_{0}(x, y, z)
\end{gathered}
$$

subject to the potential energy function,

$$
V(x, y, z)=\left\{\begin{array}{ll}
0 & \text { if } 0<x, y, z<a \\
\infty & \text { elsewhere }
\end{array} .\right.
$$

Outside of the cube in the first octant with side a,

$$
i \hbar \frac{\partial \Psi}{\partial t}=-\frac{\hbar^{2}}{2 m}\left(\frac{\partial^{2} \Psi}{\partial x^{2}}+\frac{\partial^{2} \Psi}{\partial y^{2}}+\frac{\partial^{2} \Psi}{\partial z^{2}}\right)+(\infty) \Psi, \quad x, y, z \notin(0, a),
$$

and the only way for both sides to be equal is if $\Psi(x, y, z, t)=0$. The wave function is required to be continuous, so $\Psi=0$ on the sides of this cube, that is, the $x=0, x=a, y=0, y=a, z=0$, and $z=a$ planes.

Inside the cube, then, the initial boundary value problem to solve is

$$
\begin{gathered}
i \hbar \frac{\partial \Psi}{\partial t}=-\frac{\hbar^{2}}{2 m}\left(\frac{\partial^{2} \Psi}{\partial x^{2}}+\frac{\partial^{2} \Psi}{\partial y^{2}}+\frac{\partial^{2} \Psi}{\partial z^{2}}\right), \quad 0<x, y, z<a, t>0 \\
\Psi(0, y, z, t)=0, \quad \Psi(x, 0, z, t)=0, \quad \Psi(x, y, 0, t)=0, \\
\Psi(a, y, z, t)=0, \quad \Psi(x, a, z, t)=0, \quad \Psi(x, y, a, t)=0, \\
\Psi(x, y, z, 0)=\Psi_{0}(x, y, z) .
\end{gathered}
$$

Because Schrödinger's equation and its associated boundary conditions are linear and homogeneous, the method of separation of variables can be applied: Assume a product solution of the form $\Psi(x, y, z, t)=X(x) Y(y) Z(z) T(t)$ and plug it into the PDE

$$
\begin{aligned}
i \hbar \frac{\partial}{\partial t}[X(x) Y(y) Z(z) T(t)] & =-\frac{\hbar^{2}}{2 m}\left[\frac{\partial^{2}}{\partial x^{2}}[X(x) Y(y) Z(z) T(t)]+\frac{\partial^{2}}{\partial y^{2}}[X(x) Y(y) Z(z) T(t)]+\frac{\partial^{2}}{\partial z^{2}}[X(x) Y(y) Z(z) T(t)]\right] \\
i \hbar X(x) Y(y) Z(z) T^{\prime}(t) & =-\frac{\hbar^{2}}{2 m}\left[X^{\prime \prime}(x) Y(y) Z(z) T(t)+X(x) Y^{\prime \prime}(y) Z(z) T(t)+X(x) Y(y) Z^{\prime \prime}(z) T(t)\right]
\end{aligned}
$$

and the boundary conditions.

$$
\begin{array}{lllll}
\Psi(0, y, z, t)=0 & \rightarrow & X(0) Y(y) Z(z) T(t)=0 & \rightarrow & X(0)=0 \\
\Psi(a, y, z, t)=0 & \rightarrow & X(a) Y(y) Z(z) T(t)=0 & \rightarrow & X(a)=0 \\
\Psi(x, 0, z, t)=0 & \rightarrow & X(x) Y(0) Z(z) T(t)=0 & \rightarrow & Y(0)=0 \\
\Psi(x, a, z, t)=0 & \rightarrow & X(x) Y(a) Z(z) T(t)=0 & \rightarrow & Y(a)=0 \\
\Psi(x, y, 0, t)=0 & \rightarrow & X(x) Y(y) Z(0) T(t)=0 & \rightarrow & Z(0)=0 \\
\Psi(x, y, a, t)=0 & \rightarrow & X(x) Y(y) Z(a) T(t)=0 & \rightarrow & Z(a)=0
\end{array}
$$

Divide both sides of the PDE by $X(x) Y(y) Z(z) T(t)$ to separate variables.

$$
i \hbar \frac{T^{\prime}(t)}{T(t)}=-\frac{\hbar^{2}}{2 m}\left[\frac{X^{\prime \prime}(x)}{X(x)}+\frac{Y^{\prime \prime}(y)}{Y(y)}+\frac{Z^{\prime \prime}(z)}{Z(z)}\right]
$$

The only way a function of t can be equal to a function of x, y, and z is if both are equal to a constant.

$$
i \hbar \frac{T^{\prime}(t)}{T(t)}=-\frac{\hbar^{2}}{2 m}\left[\frac{X^{\prime \prime}(x)}{X(x)}+\frac{Y^{\prime \prime}(y)}{Y(y)}+\frac{Z^{\prime \prime}(z)}{Z(z)}\right]=E
$$

Solve this second equation for $X^{\prime \prime}(x) / X(x)$.

$$
\frac{X^{\prime \prime}(x)}{X(x)}=-\frac{2 m E}{\hbar^{2}}-\frac{Y^{\prime \prime}(y)}{Y(y)}-\frac{Z^{\prime \prime}(z)}{Z(z)}
$$

The only way a function of x can be equal to a function of y and z is if both are equal to another constant.

$$
\frac{X^{\prime \prime}(x)}{X(x)}=-\frac{2 m E}{\hbar^{2}}-\frac{Y^{\prime \prime}(y)}{Y(y)}-\frac{Z^{\prime \prime}(z)}{Z(z)}=F
$$

Solve this second equation for $Y^{\prime \prime}(y) / Y(y)$.

$$
\frac{Y^{\prime \prime}(y)}{Y(y)}=-\frac{2 m E}{\hbar^{2}}-F-\frac{Z^{\prime \prime}(z)}{Z(z)}
$$

The only way a function of y can be equal to a function of z is if both are equal to another constant.

$$
\frac{Y^{\prime \prime}(y)}{Y(y)}=-\frac{2 m E}{\hbar^{2}}-F-\frac{Z^{\prime \prime}(z)}{Z(z)}=G
$$

As a result of applying the method of separation of variables, Schrödinger's equation has reduced to four ODEs - one in x, one in y, one in z, and one in t.

$$
\left.\begin{array}{rl}
i \hbar \frac{T^{\prime}(t)}{T(t)} & =E \\
\frac{X^{\prime \prime}(x)}{X(x)} & =F \\
\frac{Y^{\prime \prime}(y)}{Y(y)} & =G \\
-\frac{2 m E}{\hbar^{2}}-F-\frac{Z^{\prime \prime}(z)}{Z(z)} & =G
\end{array}\right\}
$$

The strategy is to solve the second and third eigenvalue problems first to get F and G. Once those are known, the fourth eigenvalue problem can be solved to get E. Finally, the first eigenvalue problem can be solved to get $T(t)$.

$$
X^{\prime \prime}(x)=F X(x), \quad X(0)=0, X(a)=0
$$

Check to see if there are positive eigenvalues: $F=\mu^{2}$.

$$
X^{\prime \prime}=\mu^{2} X
$$

The general solution can be written in terms of hyperbolic sine and hyperbolic cosine.

$$
X(x)=C_{1} \cosh \mu x+C_{2} \sinh \mu x
$$

Apply the boundary conditions to determine C_{1} and C_{2}.

$$
\begin{aligned}
& X(0)=C_{1}=0 \\
& X(a)=C_{1} \cosh \mu a+C_{2} \sinh \mu a=0
\end{aligned}
$$

Since $C_{1}=0$, the second equation reduces to $C_{2} \sinh \mu a=0$. No nonzero value of μ can satisfy this equation, so $C_{2}=0$. This leads to $X(x)=0$, the trivial solution, which means there are no positive eigenvalues. Check to see if zero is an eigenvalue: $F=0$.

$$
X^{\prime \prime}=0
$$

The general solution is obtained by integrating both sides with respect to x twice.

$$
X(x)=C_{3} x+C_{4}
$$

Apply the boundary conditions to determine C_{3} and C_{4}.

$$
\begin{aligned}
& X(0)=C_{4}=0 \\
& X(a)=C_{3} a+C_{4}=0
\end{aligned}
$$

Since $C_{4}=0$, the second equation reduces to $C_{3} a=0$, so $C_{3}=0$. This leads to $X(x)=0$, the trivial solution, which means zero is not an eigenvalue. Check to see if there are negative eigenvalues: $F=-\gamma^{2}$.

$$
X^{\prime \prime}=-\gamma^{2} X
$$

The general solution can be written in terms of sine and cosine.

$$
X(x)=C_{5} \cos \gamma x+C_{6} \sin \gamma x
$$

Apply the boundary conditions to determine C_{5} and C_{6}.

$$
\begin{aligned}
& X(0)=C_{5}=0 \\
& X(a)=C_{5} \cos \gamma a+C_{6} \sin \gamma a=0
\end{aligned}
$$

Since $C_{5}=0$, this second equation reduces to $C_{6} \sin \gamma a=0$.

$$
\begin{aligned}
\sin \gamma a & =0 \\
\gamma a & =j \pi, \quad j=0, \pm 1, \pm 2, \ldots \\
\gamma & =\frac{j \pi}{a}
\end{aligned}
$$

There are in fact negative eigenvalues,

$$
F=-\gamma^{2}=-\frac{j^{2} \pi^{2}}{a^{2}}, \quad j=1,2, \ldots
$$

and the eigenfunctions associated with them are

$$
X(x)=C_{6} \sin \frac{j \pi x}{a},
$$

where C_{6} remains arbitrary. j is a positive integer because $j=0$ leads to the zero eigenvalue, and negative values of j lead to redundant eigenvalues. The same argument can be used to solve the eigenvalue problem involving $Y(y)$.

$$
Y^{\prime \prime}(y)=G Y(y), \quad Y(0)=0, Y(a)=0
$$

Its solution is

$$
G=-\frac{k^{2} \pi^{2}}{a^{2}}, \quad k=1,2, \ldots
$$

with

$$
Y(y)=C_{7} \sin \frac{k \pi y}{a}
$$

where C_{7} is an arbitrary constant. With these values of F and G, the eigenvalue problem involving $Z(z)$ becomes

$$
-\frac{2 m E}{\hbar^{2}}-\left(-\frac{j^{2} \pi^{2}}{a^{2}}\right)-\frac{Z^{\prime \prime}(z)}{Z(z)}=-\frac{k^{2} \pi^{2}}{a^{2}}, \quad Z(0)=0, Z(a)=0 .
$$

Solve for $Z^{\prime \prime}(z)$.

$$
Z^{\prime \prime}=-\left(\frac{2 m E}{\hbar^{2}}-\frac{j^{2} \pi^{2}}{a^{2}}-\frac{k^{2} \pi^{2}}{a^{2}}\right) Z
$$

This ODE for $Z(z)$ and its boundary conditions are the same as those for $X(x)$ and $Y(y)$. The general solution for which eigenvalues exist is then

$$
Z(z)=C_{8} \cos \sqrt{\frac{2 m E}{\hbar^{2}}-\frac{j^{2} \pi^{2}}{a^{2}}-\frac{k^{2} \pi^{2}}{a^{2}}} z+C_{9} \sin \sqrt{\frac{2 m E}{\hbar^{2}}-\frac{j^{2} \pi^{2}}{a^{2}}-\frac{k^{2} \pi^{2}}{a^{2}}} z .
$$

Apply the boundary conditions to determine C_{8} and C_{9}.

$$
\begin{aligned}
& Z(0)=C_{8}=0 \\
& Z(a)=C_{8} \cos \sqrt{\frac{2 m E}{\hbar^{2}}-\frac{j^{2} \pi^{2}}{a^{2}}-\frac{k^{2} \pi^{2}}{a^{2}}} a+C_{9} \sin \sqrt{\frac{2 m E}{\hbar^{2}}-\frac{j^{2} \pi^{2}}{a^{2}}-\frac{k^{2} \pi^{2}}{a^{2}}} a=0
\end{aligned}
$$

Since $C_{8}=0$, this second equation reduces to

$$
\begin{aligned}
C_{9} \sin \sqrt{\frac{2 m E}{\hbar^{2}}-\frac{j^{2} \pi^{2}}{a^{2}}-\frac{k^{2} \pi^{2}}{a^{2}}} a & =0 \\
\sin \sqrt{\frac{2 m E}{\hbar^{2}}-\frac{j^{2} \pi^{2}}{a^{2}}-\frac{k^{2} \pi^{2}}{a^{2}}} a & =0 \\
\sqrt{\frac{2 m E}{\hbar^{2}}-\frac{j^{2} \pi^{2}}{a^{2}}-\frac{k^{2} \pi^{2}}{a^{2}}} a & =l \pi, \quad l=0, \pm 1, \pm 2, \ldots \\
\frac{2 m E}{\hbar^{2}}-\frac{j^{2} \pi^{2}}{a^{2}}-\frac{k^{2} \pi^{2}}{a^{2}} & =\frac{l^{2} \pi^{2}}{a^{2}} .
\end{aligned}
$$

Solve for E.

$$
E_{j k l}=\frac{\pi^{2} \hbar^{2}}{2 m a^{2}}\left(j^{2}+k^{2}+l^{2}\right), \quad\left\{\begin{array}{l}
j=1,2, \ldots \\
k=1,2, \ldots \\
l=1,2, \ldots
\end{array}\right.
$$

Only positive values of l are used because $l=0$ leads to the zero eigenvalue, and negative values lead to redundant values of E. The eigenfunctions associated with these values of E are

$$
Z(z)=C_{9} \sin \frac{l \pi z}{a},
$$

where C_{9} is an arbitrary constant. With this value of E, the eigenvalue problem involving $T(t)$ becomes

$$
i \hbar \frac{T^{\prime}(t)}{T(t)}=\frac{\pi^{2} \hbar^{2}}{2 m a^{2}}\left(j^{2}+k^{2}+l^{2}\right)
$$

which has the general solution,

$$
T(t)=C_{10} \exp \left[-\frac{i \pi^{2} \hbar}{2 m a^{2}}\left(j^{2}+k^{2}+l^{2}\right) t\right] .
$$

Consequently, the stationary states are

$$
\begin{aligned}
\Psi_{j k l}(x, y, z, t) & =X_{j}(x) Y_{k}(y) Z_{l}(z) T_{j k l}(t) \\
& =A \sin \frac{j \pi x}{a} \sin \frac{k \pi y}{a} \sin \frac{l \pi z}{a} \exp \left[-\frac{i \pi^{2} \hbar}{2 m a^{2}}\left(j^{2}+k^{2}+l^{2}\right) t\right],
\end{aligned}
$$

where A is a combination of the arbitrary constants. For the solutions to be physically relevant, the normalization constant A is chosen so that

$$
\begin{aligned}
1=\iiint_{\text {the cube }}\left|\Psi_{j k l}(x, y, z, t)\right|^{2} d \mathcal{V} & =\int_{0}^{a} \int_{0}^{a} \int_{0}^{a} \Psi_{j k l}^{*}(x, y, z, t) \Psi_{j k l}(x, y, z, t) d x d y d z \\
& =A^{2} \int_{0}^{a} \int_{0}^{a} \int_{0}^{a} \sin ^{2} \frac{j \pi x}{a} \sin ^{2} \frac{k \pi y}{a} \sin ^{2} \frac{l \pi z}{a} d x d y d z \\
& =A^{2}\left(\int_{0}^{a} \sin ^{2} \frac{j \pi x}{a} d x\right)\left(\int_{0}^{a} \sin ^{2} \frac{k \pi y}{a} d y\right)\left(\int_{0}^{a} \sin ^{2} \frac{l \pi z}{a} d z\right) \\
& =A^{2}\left(\frac{a}{2}\right)\left(\frac{a}{2}\right)\left(\frac{a}{2}\right) .
\end{aligned}
$$

Solve for A.

$$
A= \pm\left(\frac{2}{a}\right)^{3 / 2}
$$

Therefore, the stationary states are

$$
\Psi_{j k l}(x, y, z, t)=\left(\frac{2}{a}\right)^{3 / 2} \sin \frac{j \pi x}{a} \sin \frac{k \pi y}{a} \sin \frac{l \pi z}{a} \exp \left[-\frac{i \pi^{2} \hbar}{2 m a^{2}}\left(j^{2}+k^{2}+l^{2}\right) t\right], \quad\left\{\begin{array}{l}
j=1,2, \ldots \\
k=1,2, \ldots \\
l=1,2, \ldots
\end{array}\right.
$$

According to the principle of superposition, the general solution to the Schrödinger equation is a linear combination of the stationary states over all the eigenvalues.

$$
\begin{aligned}
\Psi(x, y, z, t) & =\sum_{j=1}^{\infty} \sum_{k=1}^{\infty} \sum_{l=1}^{\infty} c_{j k l} \Psi_{j k l}(x, y, z, t) \\
& =\sum_{j=1}^{\infty} \sum_{k=1}^{\infty} \sum_{l=1}^{\infty} c_{j k l}\left(\frac{2}{a}\right)^{3 / 2} \sin \frac{j \pi x}{a} \sin \frac{k \pi y}{a} \sin \frac{l \pi z}{a} \exp \left[-\frac{i \pi^{2} \hbar}{2 m a^{2}}\left(j^{2}+k^{2}+l^{2}\right) t\right] \\
& =\left(\frac{2}{a}\right)^{3 / 2} \sum_{j=1}^{\infty} \sum_{k=1}^{\infty} \sum_{l=1}^{\infty} c_{j k l} \sin \frac{j \pi x}{a} \sin \frac{k \pi y}{a} \sin \frac{l \pi z}{a} \exp \left[-\frac{i \pi^{2} \hbar}{2 m a^{2}}\left(j^{2}+k^{2}+l^{2}\right) t\right]
\end{aligned}
$$

Now apply the initial condition to determine $c_{j k l}$.

$$
\Psi(x, y, z, 0)=\left(\frac{2}{a}\right)^{3 / 2} \sum_{j=1}^{\infty} \sum_{k=1}^{\infty} \sum_{l=1}^{\infty} c_{j k l} \sin \frac{j \pi x}{a} \sin \frac{k \pi y}{a} \sin \frac{l \pi z}{a}=\Psi_{0}(x, y, z)
$$

Multiply both sides by $(a / 2)^{3 / 2}$.

$$
\sum_{k=1}^{\infty} \sum_{l=1}^{\infty} \sin \frac{k \pi y}{a} \sin \frac{l \pi z}{a}\left(\sum_{j=1}^{\infty} c_{j k l} \sin \frac{j \pi x}{a}\right)=\left(\frac{a}{2}\right)^{3 / 2} \Psi_{0}(x, y, z)
$$

Multiply both sides by $\sin (n \pi x / a)$, where n is a positive integer,

$$
\sum_{k=1}^{\infty} \sum_{l=1}^{\infty} \sin \frac{k \pi y}{a} \sin \frac{l \pi z}{a}\left(\sum_{j=1}^{\infty} c_{j k l} \sin \frac{j \pi x}{a} \sin \frac{n \pi x}{a}\right)=\left(\frac{a}{2}\right)^{3 / 2} \Psi_{0}(x, y, z) \sin \frac{n \pi x}{a}
$$

and then integrate both sides with respect to x from 0 to a.

$$
\int_{0}^{a} \sum_{k=1}^{\infty} \sum_{l=1}^{\infty} \sin \frac{k \pi y}{a} \sin \frac{l \pi z}{a}\left(\sum_{j=1}^{\infty} c_{j k l} \sin \frac{j \pi x}{a} \sin \frac{n \pi x}{a}\right) d x=\int_{0}^{a}\left(\frac{a}{2}\right)^{3 / 2} \Psi_{0}(x, y, z) \sin \frac{n \pi x}{a} d x
$$

Bring the constants in front.

$$
\sum_{k=1}^{\infty} \sum_{l=1}^{\infty} \sin \frac{k \pi y}{a} \sin \frac{l \pi z}{a}\left(\sum_{j=1}^{\infty} c_{j k l} \int_{0}^{a} \sin \frac{j \pi x}{a} \sin \frac{n \pi x}{a} d x\right)=\left(\frac{a}{2}\right)^{3 / 2} \int_{0}^{a} \Psi_{0}(x, y, z) \sin \frac{n \pi x}{a} d x
$$

Because the sine functions are orthogonal, the integral on the left is zero if $j \neq n$. As a result, every term in the infinite series vanishes except for the one in which $j=n$.

$$
\sum_{k=1}^{\infty} \sum_{l=1}^{\infty} \sin \frac{k \pi y}{a} \sin \frac{l \pi z}{a}\left(c_{j k l} \int_{0}^{a} \sin ^{2} \frac{j \pi x}{a} d x\right)=\left(\frac{a}{2}\right)^{3 / 2} \int_{0}^{a} \Psi_{0}(x, y, z) \sin \frac{j \pi x}{a} d x
$$

Evaluate the integral on the left.

$$
\sum_{k=1}^{\infty} \sum_{l=1}^{\infty} \sin \frac{k \pi y}{a} \sin \frac{l \pi z}{a}\left(c_{j k l} \cdot \frac{a}{2}\right)=\left(\frac{a}{2}\right)^{3 / 2} \int_{0}^{a} \Psi_{0}(x, y, z) \sin \frac{j \pi x}{a} d x
$$

Multiply both sides by $2 / a$.

$$
\sum_{l=1}^{\infty} \sin \frac{l \pi z}{a}\left(\sum_{k=1}^{\infty} c_{j k l} \sin \frac{k \pi y}{a}\right)=\left(\frac{a}{2}\right)^{1 / 2} \int_{0}^{a} \Psi_{0}(x, y, z) \sin \frac{j \pi x}{a} d x
$$

Multiply both sides by $\sin (q \pi y / a)$, where q is a positive integer,

$$
\sum_{l=1}^{\infty} \sin \frac{l \pi z}{a}\left(\sum_{k=1}^{\infty} c_{j k l} \sin \frac{k \pi y}{a} \sin \frac{q \pi y}{a}\right)=\left(\frac{a}{2}\right)^{1 / 2} \int_{0}^{a} \Psi_{0}(x, y, z) \sin \frac{j \pi x}{a} \sin \frac{q \pi y}{a} d x
$$

and then integrate both sides with respect to y from 0 to a.

$$
\int_{0}^{a} \sum_{l=1}^{\infty} \sin \frac{l \pi z}{a}\left(\sum_{k=1}^{\infty} c_{j k l} \sin \frac{k \pi y}{a} \sin \frac{q \pi y}{a}\right) d y=\int_{0}^{a}\left(\frac{a}{2}\right)^{1 / 2} \int_{0}^{a} \Psi_{0}(x, y, z) \sin \frac{j \pi x}{a} \sin \frac{q \pi y}{a} d x d y
$$

Bring the constants in front.

$$
\sum_{l=1}^{\infty} \sin \frac{l \pi z}{a}\left(\sum_{k=1}^{\infty} c_{j k l} \int_{0}^{a} \sin \frac{k \pi y}{a} \sin \frac{q \pi y}{a} d y\right)=\left(\frac{a}{2}\right)^{1 / 2} \int_{0}^{a} \int_{0}^{a} \Psi_{0}(x, y, z) \sin \frac{j \pi x}{a} \sin \frac{q \pi y}{a} d x d y
$$

Because the sine functions are orthogonal, the integral on the left is zero if $k \neq q$. As a result, every term in the infinite series vanishes except for the one in which $k=q$.

$$
\sum_{l=1}^{\infty} \sin \frac{l \pi z}{a}\left(c_{j k l} \int_{0}^{a} \sin ^{2} \frac{k \pi y}{a} d y\right)=\left(\frac{a}{2}\right)^{1 / 2} \int_{0}^{a} \int_{0}^{a} \Psi_{0}(x, y, z) \sin \frac{j \pi x}{a} \sin \frac{k \pi y}{a} d x d y
$$

Evaluate the integral on the left.

$$
\sum_{l=1}^{\infty} \sin \frac{l \pi z}{a}\left(c_{j k l} \cdot \frac{a}{2}\right)=\left(\frac{a}{2}\right)^{1 / 2} \int_{0}^{a} \int_{0}^{a} \Psi_{0}(x, y, z) \sin \frac{j \pi x}{a} \sin \frac{k \pi y}{a} d x d y
$$

Multiply both sides by $2 / a$.

$$
\sum_{l=1}^{\infty} c_{j k l} \sin \frac{l \pi z}{a}=\left(\frac{2}{a}\right)^{1 / 2} \int_{0}^{a} \int_{0}^{a} \Psi_{0}(x, y, z) \sin \frac{j \pi x}{a} \sin \frac{k \pi y}{a} d x d y
$$

Multiply both sides by $\sin (s \pi z / a)$, where s is a positive integer,

$$
\sum_{l=1}^{\infty} c_{j k l} \sin \frac{l \pi z}{a} \sin \frac{s \pi z}{a}=\left(\frac{2}{a}\right)^{1 / 2} \int_{0}^{a} \int_{0}^{a} \Psi_{0}(x, y, z) \sin \frac{j \pi x}{a} \sin \frac{k \pi y}{a} \sin \frac{s \pi z}{a} d x d y
$$

and then integrate both sides with respect to z from 0 to a.

$$
\int_{0}^{a} \sum_{l=1}^{\infty} c_{j k l} \sin \frac{l \pi z}{a} \sin \frac{s \pi z}{a} d z=\int_{0}^{a}\left(\frac{2}{a}\right)^{1 / 2} \int_{0}^{a} \int_{0}^{a} \Psi_{0}(x, y, z) \sin \frac{j \pi x}{a} \sin \frac{k \pi y}{a} \sin \frac{s \pi z}{a} d x d y d z
$$

Bring the constants in front.

$$
\sum_{l=1}^{\infty} c_{j k l} \int_{0}^{a} \sin \frac{l \pi z}{a} \sin \frac{s \pi z}{a} d z=\left(\frac{2}{a}\right)^{1 / 2} \int_{0}^{a} \int_{0}^{a} \int_{0}^{a} \Psi_{0}(x, y, z) \sin \frac{j \pi x}{a} \sin \frac{k \pi y}{a} \sin \frac{s \pi z}{a} d x d y d z
$$

Because the sine functions are orthogonal, the integral on the left is zero if $l \neq s$. As a result, every term in the infinite series vanishes except for the one in which $l=s$.

$$
c_{j k l} \int_{0}^{a} \sin ^{2} \frac{l \pi z}{a} d z=\left(\frac{2}{a}\right)^{1 / 2} \int_{0}^{a} \int_{0}^{a} \int_{0}^{a} \Psi_{0}(x, y, z) \sin \frac{j \pi x}{a} \sin \frac{k \pi y}{a} \sin \frac{l \pi z}{a} d x d y d z
$$

Evaluate the integral on the left.

$$
c_{j k l} \cdot \frac{a}{2}=\left(\frac{2}{a}\right)^{1 / 2} \int_{0}^{a} \int_{0}^{a} \int_{0}^{a} \Psi_{0}(x, y, z) \sin \frac{j \pi x}{a} \sin \frac{k \pi y}{a} \sin \frac{l \pi z}{a} d x d y d z
$$

Therefore,

$$
c_{j k l}=\left(\frac{2}{a}\right)^{3 / 2} \int_{0}^{a} \int_{0}^{a} \int_{0}^{a} \Psi_{0}(x, y, z) \sin \frac{j \pi x}{a} \sin \frac{k \pi y}{a} \sin \frac{l \pi z}{a} d x d y d z
$$

Part (b)

Evaluate the energy for many values of j, k, and l.

$$
\begin{align*}
& E_{111}=\frac{\pi^{2} \hbar^{2}}{2 m a^{2}}\left(1^{2}+1^{2}+1^{2}\right)=\frac{\pi^{2} \hbar^{2}}{2 m a^{2}}(3)=E_{1} \\
& E_{211}=\frac{\pi^{2} \hbar^{2}}{2 m a^{2}}\left(2^{2}+1^{2}+1^{2}\right)=\frac{\pi^{2} \hbar^{2}}{2 m a^{2}}(6)=E_{2} \\
& E_{121}=\frac{\pi^{2} \hbar^{2}}{2 m a^{2}}\left(1^{2}+2^{2}+1^{2}\right)=\frac{\pi^{2} \hbar^{2}}{2 m a^{2}}(6) \\
& E_{112}=\frac{\pi^{2} \hbar^{2}}{2 m a^{2}}\left(1^{2}+1^{2}+2^{2}\right)=\frac{\pi^{2} \hbar^{2}}{2 m a^{2}}(6) \\
& E_{221}=\frac{\pi^{2} \hbar^{2}}{2 m a^{2}}\left(2^{2}+2^{2}+1^{2}\right)=\frac{\pi^{2} \hbar^{2}}{2 m a^{2}}(9)=E_{3} \\
& E_{212}=\frac{\pi^{2} \hbar^{2}}{2 m a^{2}}\left(2^{2}+1^{2}+2^{2}\right)=\frac{\pi^{2} \hbar^{2}}{2 m a^{2}}(9) \\
& E_{122}=\frac{\pi^{2} \hbar^{2}}{2 m a^{2}}\left(1^{2}+2^{2}+2^{2}\right)=\frac{\pi^{2} \hbar^{2}}{2 m a^{2}}(9) \\
& E_{311}=\frac{\pi^{2} \hbar^{2}}{2 m a^{2}}\left(3^{2}+1^{2}+1^{2}\right)=\frac{\pi^{2} \hbar^{2}}{2 m a^{2}}(11)=E_{4} \\
& E_{131}=\frac{\pi^{2} \hbar^{2}}{2 m a^{2}}\left(1^{2}+3^{2}+1^{2}\right)=\frac{\pi^{2} \hbar^{2}}{2 m a^{2}}(\tag{11}\\
& E_{113}=\frac{\pi^{2} \hbar^{2}}{2 m a^{2}}\left(1^{2}+1^{2}+3^{2}\right)=\frac{\pi^{2} \hbar^{2}}{2 m a^{2}}(11) \tag{11}\\
& E_{222}=\frac{\pi^{2} \hbar^{2}}{2 m a^{2}}\left(2^{2}+2^{2}+2^{2}\right)=\frac{\pi^{2} \hbar^{2}}{2 m a^{2}}(12)=E_{5} \\
& E_{312}=\frac{\pi^{2} \hbar^{2}}{2 m a^{2}}\left(3^{2}+1^{2}+2^{2}\right)=\frac{\pi^{2} \hbar^{2}}{2 m a^{2}}(14)=E_{6} \\
& E_{321}=\frac{\pi^{2} \hbar^{2}}{2 m a^{2}}\left(3^{2}+2^{2}+1^{2}\right)=\frac{\pi^{2} \hbar^{2}}{2 m a^{2}}(1 \tag{14}\\
& E_{132}=\frac{\pi^{2} \hbar^{2}}{2 m a^{2}}\left(1^{2}+3^{2}+2^{2}\right)=\frac{\pi^{2} \hbar^{2}}{2 m a^{2}}(14) \tag{14}\\
& E_{231}=\frac{\pi^{2} \hbar^{2}}{2 m a^{2}}\left(2^{2}+3^{2}+1^{2}\right)=\frac{\pi^{2} \hbar^{2}}{2 m a^{2}}(14) \tag{14}\\
& E_{123}=\frac{\pi^{2} \hbar^{2}}{2 m a^{2}}\left(1^{2}+2^{2}+3^{2}\right)=\frac{\pi^{2} \hbar^{2}}{2 m a^{2}}(14) \tag{14}\\
& E_{213}=\frac{\pi^{2} \hbar^{2}}{2 m a^{2}}\left(2^{2}+1^{2}+3^{2}\right)=\frac{\pi^{2} \hbar^{2}}{2 m a^{2}}(14) \tag{14}
\end{align*}
$$

The degeneracy is the number of states that have the same energy. Therefore, $d_{1}=1, d_{2}=3$, $d_{3}=3, d_{4}=3, d_{5}=1$, and $d_{6}=6$.

Part (c)

Evaluate the energy for more values of j, k, and l.

$$
\begin{align*}
& E_{322}=\frac{\pi^{2} \hbar^{2}}{2 m a^{2}}\left(3^{2}+2^{2}+2^{2}\right)=\frac{\pi^{2} \hbar^{2}}{2 m a^{2}}(17)=E_{7} \\
& E_{232}=\frac{\pi^{2} \hbar^{2}}{2 m a^{2}}\left(2^{2}+3^{2}+2^{2}\right)=\frac{\pi^{2} \hbar^{2}}{2 m a^{2}}(17) \\
& E_{223}=\frac{\pi^{2} \hbar^{2}}{2 m a^{2}}\left(2^{2}+2^{2}+3^{2}\right)=\frac{\pi^{2} \hbar^{2}}{2 m a^{2}}(17) \\
& E_{411}=\frac{\pi^{2} \hbar^{2}}{2 m a^{2}}\left(4^{2}+1^{2}+1^{2}\right)=\frac{\pi^{2} \hbar^{2}}{2 m a^{2}}(18)=E_{8} \\
& E_{141}=\frac{\pi^{2} \hbar^{2}}{2 m a^{2}}\left(1^{2}+4^{2}+1^{2}\right)=\frac{\pi^{2} \hbar^{2}}{2 m a^{2}}(18) \\
& E_{114}=\frac{\pi^{2} \hbar^{2}}{2 m a^{2}}\left(1^{2}+1^{2}+4^{2}\right)=\frac{\pi^{2} \hbar^{2}}{2 m a^{2}}(18) \\
& E_{331}=\frac{\pi^{2} \hbar^{2}}{2 m a^{2}}\left(3^{2}+3^{2}+1^{2}\right)=\frac{\pi^{2} \hbar^{2}}{2 m a^{2}}(19)=E_{9} \\
& E_{313}=\frac{\pi^{2} \hbar^{2}}{2 m a^{2}}\left(3^{2}+1^{2}+3^{2}\right)=\frac{\pi^{2} \hbar^{2}}{2 m a^{2}} \\
& E_{133}=\frac{\pi^{2} \hbar^{2}}{2 m a^{2}}\left(1^{2}+3^{2}+3^{2}\right)=\frac{\pi^{2} \hbar^{2}}{2 m a^{2}}(19) \\
& E_{412}=\frac{\pi^{2} \hbar^{2}}{2 m a^{2}}\left(4^{2}+1^{2}+2^{2}\right)=\frac{\pi^{2} \hbar^{2}}{2 m a^{2}}(21)=E_{10} \\
& E_{421}=\frac{\pi^{2} \hbar^{2}}{2 m a^{2}}\left(4^{2}+2^{2}+1^{2}\right)=\frac{\pi^{2} \hbar^{2}}{2 m a^{2}} \tag{21}\\
& E_{142}=\frac{\pi^{2} \hbar^{2}}{2 m a^{2}}\left(1^{2}+4^{2}+2^{2}\right)=\frac{\pi^{2} \hbar^{2}}{2 m a^{2}} \tag{21}\\
& E_{241}=\frac{\pi^{2} \hbar^{2}}{2 m a^{2}}\left(2^{2}+4^{2}+1^{2}\right)=\frac{\pi^{2} \hbar^{2}}{2 m a^{2}} \tag{21}\\
& E_{124}=\frac{\pi^{2} \hbar^{2}}{2 m a^{2}}\left(1^{2}+2^{2}+4^{2}\right)=\frac{\pi^{2} \hbar^{2}}{2 m a^{2}}(\tag{21}\\
& E_{214}=\frac{\pi^{2} \hbar^{2}}{2 m a^{2}}\left(2^{2}+1^{2}+4^{2}\right)=\frac{\pi^{2} \hbar^{2}}{2 m a^{2}} \tag{21}\\
& E_{332}=\frac{\pi^{2} \hbar^{2}}{2 m a^{2}}\left(3^{2}+3^{2}+2^{2}\right)=\frac{\pi^{2} \hbar^{2}}{2 m a^{2}}(22)=E_{11} \\
& E_{323}=\frac{\pi^{2} \hbar^{2}}{2 m a^{2}}\left(3^{2}+2^{2}+3^{2}\right)=\frac{\pi^{2} \hbar^{2}}{2 m a^{2}}(\tag{22}\\
& E_{233}=\frac{\pi^{2} \hbar^{2}}{2 m a^{2}}\left(2^{2}+3^{2}+3^{2}\right)=\frac{\pi^{2} \hbar^{2}}{2 m a^{2}} \tag{22}
\end{align*}
$$

Evaluate the energy for even more values of j, k, and l.

$$
\begin{aligned}
& E_{422}=\frac{\pi^{2} \hbar^{2}}{2 m a^{2}}\left(4^{2}+2^{2}+2^{2}\right)=\frac{\pi^{2} \hbar^{2}}{2 m a^{2}}(24)=E_{12} \\
& E_{242}=\frac{\pi^{2} \hbar^{2}}{2 m a^{2}}\left(2^{2}+4^{2}+2^{2}\right)=\frac{\pi^{2} \hbar^{2}}{2 m a^{2}}(24) \\
& E_{224}=\frac{\pi^{2} \hbar^{2}}{2 m a^{2}}\left(2^{2}+2^{2}+4^{2}\right)=\frac{\pi^{2} \hbar^{2}}{2 m a^{2}}(24) \\
& E_{413}=\frac{\pi^{2} \hbar^{2}}{2 m a^{2}}\left(4^{2}+1^{2}+3^{2}\right)=\frac{\pi^{2} \hbar^{2}}{2 m a^{2}}(26)=E_{13} \\
& E_{431}=\frac{\pi^{2} \hbar^{2}}{2 m a^{2}}\left(4^{2}+3^{2}+1^{2}\right)=\frac{\pi^{2} \hbar^{2}}{2 m a^{2}}(26) \\
& E_{143}=\frac{\pi^{2} \hbar^{2}}{2 m a^{2}}\left(1^{2}+4^{2}+3^{2}\right)=\frac{\pi^{2} \hbar^{2}}{2 m a^{2}}(26) \\
& E_{341}=\frac{\pi^{2} \hbar^{2}}{2 m a^{2}}\left(3^{2}+4^{2}+1^{2}\right)=\frac{\pi^{2} \hbar^{2}}{2 m a^{2}}(26) \\
& E_{134}=\frac{\pi^{2} \hbar^{2}}{2 m a^{2}}\left(1^{2}+3^{2}+4^{2}\right)=\frac{\pi^{2} \hbar^{2}}{2 m a^{2}}(26) \\
& E_{314}=\frac{\pi^{2} \hbar^{2}}{2 m a^{2}}\left(3^{2}+1^{2}+4^{2}\right)=\frac{\pi^{2} \hbar^{2}}{2 m a^{2}}(26) \\
& E_{333}=\frac{\pi^{2} \hbar^{2}}{2 m a^{2}}\left(3^{2}+3^{2}+3^{2}\right)=\frac{\pi^{2} \hbar^{2}}{2 m a^{2}}(27)=E_{14} \\
& E_{511}=\frac{\pi^{2} \hbar^{2}}{2 m a^{2}}\left(5^{2}+1^{2}+1^{2}\right)=\frac{\pi^{2} \hbar^{2}}{2 m a^{2}}(27) \\
& E_{151}=\frac{\pi^{2} \hbar^{2}}{2 m a^{2}}\left(1^{2}+5^{2}+1^{2}\right)=\frac{\pi^{2} \hbar^{2}}{2 m a^{2}}(27) \\
& E_{115}=\frac{\pi^{2} \hbar^{2}}{2 m a^{2}}\left(1^{2}+1^{2}+5^{2}\right)=\frac{\pi^{2} \hbar^{2}}{2 m a^{2}}(27)
\end{aligned}
$$

The degeneracies are $d_{7}=3, d_{8}=3, d_{9}=3, d_{10}=6, d_{11}=3, d_{12}=3, d_{13}=6$, and $d_{14}=4$. Unlike the previous energies, E_{14} is obtained not only from the permutations of three numbers (5,1 , and 1), but also from another set of numbers (3,3 , and 3).

